EN
ytalibaba.com

已满i8进入i3入7y7y9秒舍弃CUDA编程!CMU等用代码将LLM编译成巨型内核,推理延迟降6.7倍

近日,CMU 助理教授贾志豪(Zhihao Jia)团队创新玩法,推出了一个名为「Mirage Persistent Kernel(MPK)」的编译器,可以自动将 LLM 转化为优化的巨型内核(megakernel),从而将 LLM 推理延迟降低 1.2 到 6.7 倍。 在这种设计中,系统仅启动一个 GPU 内核来执行整个模型 —— 从逐层计算到 GPU 间通信 —— 整个过程无需中断。这种方法提供了以下几个关键的性能优势: 消除内核启动开销:通过避免重复的内核调用,即使是在多 GPU 环境下,也能消除内核启动开销;实现跨层软件 pipeline 允许内核在计算当前层的同时,开始为下一层加载数据;重叠计算与通信:由于巨型内核可以同时执行计算操作和 GPU 间通信,从而隐藏通信延迟。 现有的高级 ML 框架 —— 如 PyTorch、Triton 和 TVM,它们本身并不支持端到端巨型内核生成。此外,现代 LLM 系统由各种不同的专用内核库构建而成:用于通信的 NCCL 或 NVSHMEM,用于高效注意力计算的 FlashInfer 或 FlashAttention,以及用于自定义计算的 CUDA 或 Triton。 那么能否通过编译自动化这个过程呢?受到这个问题的启发,来自 CMU、华盛顿大学、加州大学伯克利分校、英伟达和清华大学的团队开发出了 MPK—— 一个编译器和运行时系统,它能自动将多 GPU 的 LLM 推理转换为高性能的巨型内核。MPK 释放了端到端 GPU 融合的效能优势,同时只需要开发者付出极小的手动努力。 MPK 的一个关键优势在于:通过消除内核启动开销,并最大程度地重叠跨层的计算、数据加载和 GPU 间通信,实现了极低的 LLM 推理延迟。 除了单 GPU 优化,MPK 还将计算与 GPU 间通信融合进一个单一的巨型内核。 这种设计使得 MPK 能够最大程度地重叠计算与通信。因此,MPK 相对于当前系统的性能提升随着 GPU 数量的增加而增大,使其在多 GPU 部署场景下尤为高效。 Part 1:MPK 编译器,其将 LLM 的计算图转化为优化的任务图;Part 2:MPK 运行时系统,该系统在单个巨型内核内执行任务图,以实现高吞吐量与低延迟。 LLM 的计算过程通常表示为计算图,其中每个节点对应一个计算算子(如矩阵乘法、注意力机制)或集合通信原语(如 all-reduce),边表示算子间的数据依赖关系。现有系统通常为每个算子启动独立的 GPU 内核。 然而,这种「单算子单内核」的执行模型难以实现 pipeline 优化,因为依赖关系是在整个内核的粗粒度层面强制执行的,而非实际数据单元层面。 典型案例如矩阵乘法(matmul)后接 all-reduce 操作:现有系统中,all-reduce 内核必须等待整个 matmul 内核完成。而实际上,all-reduce 的每个数据分块仅依赖 matmul 输出的局部结果。这种逻辑依赖与实际依赖的错配,严重限制了计算与通信的重叠潜力。 下图 2 展示了 MPK 编译器将 PyTorch 定义的 LLM 计算图转化为优化细粒度任务图,最大化暴露并行性。右侧展示次优方案 —— 其引入不必要的数据依赖与全局屏障,导致跨层流水线优化机会受限。 为了解决此问题,MPK 引入的编译器可将 LLM 计算图自动转化为细粒度任务图。该任务图在子内核级别显式捕获依赖关系,实现更激进的跨层流水线优化。 任务(矩形表示),代表分配给单个 GPU 流式多处理器(SM)的计算 / 通信单元。事件(圆形表示),表示任务间的同步点。触发机制,每个任务发出指向触发事件的边,该事件在关联任务全部完成后激活。依赖机制,每个任务接收来自依赖事件的边,表明事件激活后任务立即启动。 任务图使 MPK 能够发掘计算图中无法实现的 pipeline 优化机会。例如,MPK 可以构建优化任务图 —— 其中每个 all-reduce 任务仅依赖于生成其输入的对应 matmul 任务,从而实现分块执行与计算通信重叠。 MPK 包含内置 GPU 运行时系统,可在单个 GPU 巨型内核内完整执行任务图。这使得系统能在推理过程中无需额外内核启动的情况下,实现任务执行与调度的细粒度控制。 获取任务:从队列中提取下一待执行任务。执行计算:运行任务(如矩阵乘法 / 注意力机制 / GPU 间数据传输)。事件触发:任务完成后通知触发事件。循环执行:重复上述过程。 调度决策由 MPK 的分布式调度单元处理,每个调度单元运行于单个线程束(warp)上。由于每个流式多处理器(SM)可以容纳多个线程束,因此单 SM 最多可并发运行 4 个调度单元。每个调度单元维护激活事件队列,并持续执行以下操作: 下图 3 展示了 MPK 的执行时间线,其中每个矩形代表一个在工作单元上运行的任务;每个圆圈代表一个事件。当一个任务完成时,它会递增其对应触发事件的计数器。当事件计数器达到预设阈值时,该事件被视为已激活,并被加入调度单元的事件队列。随后,调度单元会启动所有依赖于该事件的下游任务。 由于所有的调度和任务切换都发生在单一内核上下文内,任务间的开销极低,通常仅需 1-2 微秒,从而能够高效地执行多层、多 GPU 的 LLM 工作负载。 团队对 MPK 的愿景是使巨型内核编译既易于使用又具备高性能。目前,你只需几十行 Python 代码(主要用于指定巨型内核的输入和输出)即可将一个 LLM 编译成一个巨型内核。此方向仍有广阔的探索空间,目前正在积极攻关的一些关键领域包括如下: 支持现代 GPU 架构。下一个里程碑是将 MPK 扩展到支持下一代架构,例如 NVIDIA Blackwell。一个主要挑战在于如何将线程束专业化,这是新型 GPU 的一项关键优化技术,与 MPK 的巨型内核执行模型相集成。处理工作负载动态性。MPK 目前构建的是静态任务图,这限制了它处理动态工作负载(如 MoE 模型)的能力。团队正在开发新的编译策略,使 MPK 能够在巨型内核内部支持动态控制流和条件执行。高级调度与任务分配。MPK 在任务级别解锁了新的细粒度调度能力。虽然当前的实现使用简单的轮询调度在流式多处理器(SM)之间分配任务,但团队看到了在高级调度策略(如优先级感知或吞吐量优化策略)方面令人兴奋的机会,可应用于诸如延迟服务等级目标(SLO)驱动的服务或混合批处理等场景。 团队相信,MPK 代表了在 GPU 上编译和执行 LLM 推理工作负载方式的根本性转变,并热切期待与社区合作,共同推动这一愿景向前发展。

已满i8进入i3入7y7y9秒
已满i8进入i3入7y7y9秒当地时间22日早间,伊朗国家核安全系统中心表示,在福尔多、纳坦兹、伊斯法罕核设施遭到美国袭击后,该中心立即对有关地区是否发生核污染进行了调查评估,确认目前未发现任何污染迹象。直播吧6月28日讯 曼联官方宣布将于8月9日和佛罗伦萨在老特拉福德进行一场友谊赛,这将是红魔季前赛最后一场比赛。本场比赛,库尼亚有望迎来首秀,而德赫亚则可能面对老东家。已满i8进入i3入7y7y9秒y31成色好的s31正品作为依托星火医疗大模型技术底座打造的面向居民的AI健康助手应用——讯飞晓医,此次也迎来了讯飞晓医香港版,其服务范围首次延伸至香港地区。罗马诺表示,罗伯逊现在是马竞左后卫位置的头号目标,他被马竞内部视为理想人选。这笔交易并不容易,因为即使凯尔凯兹即将加盟利物浦,红军依然对罗伯逊有着高度的评价。
20250818 🌶 已满i8进入i3入7y7y9秒2019年9月10日,随着马云“青山不改,绿水长流,后会有期”演讲的结束,马云正式宣布退休。虽然说“没有马云的时代,只有时代的马云”这话没错,但随着马云的退出江湖,很多人都隐约的意识到,一个时代结束了。今天很多人认为中国经济的转折是因为三年疫情,但明眼人都明白,中国经济的转折是因为旧的发展模式已经走到了尽头,新的发展模式亟待崛起,疫情只不过是跟这个转折的时点恰巧重叠,因而给人们造成了疫情是这个转折发生的原因的错觉而已。但毋庸置疑的是,马云的退出江湖确实是上一个时代落幕的典型的标志与象征。回乡下叔叔家被轮流欺负是哪一集当地时间6月22日,一名美国高级官员承认,B-2轰炸机对伊朗福尔多核设施的袭击并没有摧毁这座戒备森严的设施,但造成了严重损坏。
已满i8进入i3入7y7y9秒
📸 彭志举记者 陈生 摄
20250818 🔞 已满i8进入i3入7y7y9秒高考成绩数据管理严密,查询和发布均有官方固定渠道和时间点,所谓“提前查”往往是犯罪分子获取个人信息的手段,切莫掉入骗子的陷阱。男生把困困塞到女生困困里2025年,货拉拉以“全球最大物流交易平台”之名再次冲击资本市场,其招股书中“连续三年盈利”的数据背后,是一场资本与劳动、平台与司机、市场与政策的多方博弈。这个曾以“用科技重构物流生态”为口号的互联网货运平台,如今正陷入“运力维系靠天收”的困局。不少师傅表示,平台派单不合理,这其实也是货拉拉的长期问题。
已满i8进入i3入7y7y9秒
📸 孟晓晓记者 闫敬超 摄
🍆 至此,本届世俱杯只剩下洛杉矶和艾因还没进球,洛杉矶将在小组赛末轮对阵弗拉门戈,而艾因将对阵卡萨布兰卡维达德。鲁鲁影院免费观看电视剧电影窝窝
扫一扫在手机打开当前页